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Abstract

The increasing dependence of our nation and military on computer systems and our

lack of complete knowledge about their actual capabilities is a disturbing trend. A

cutting-edge technique known as symbolic execution can improve the situation in the

areas of software verification and bug finding. However, there is a real need for its

automated, mathematical approach in binary and malware analysis.

This research determines how appropriate symbolic execution is (given its current

implementation) for binary analysis by measuring how much of an executable symbolic

execution allows an analyst to reason about. Using the S2E symbolic execution engine

with a built-in constraint solver (KLEE), this research measures the effectiveness of S2E

on a sample of 27 Debian Linux binaries as compared to a traditional static disassembly

tool, IDA Pro. Disassembly code coverage and path exploration is used as a metric for

determining success. This research also explores the effectiveness of symbolic execution

on packed or obfuscated samples of the same binaries to generate a model-based

evaluation of success for techniques commonly employed by malware.

In its best case of uncompressed binaries, S2E achieves a maximum basic block

coverage of 60% as compared to IDA Pro. It symbolically executes at least one basic

block in 54% of functions and symbolically executes all basic blocks within 38% of

functions. The minimum coverages are 1% basic block coverage, 3% of functions with at

least one basic block symbolically executed, and 1% of functions with all basic blocks

symbolically executed. Obfuscated results were much higher than expected, which lead to

the discovery that S2E was not actually handling the multiple executable memory regions

in unpacker runtime code. Three recommendations are made to address the shortcomings

of S2E and allow it to process obfuscated samples correctly.

These results indicate that the practical limitations of S2E (and symbolic execution in

general) currently outweigh its theoretical superiority as a binary analysis platform.
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Selective binary analysis using this method is needed to mitigate the path explosion

problem that occurs when symbolically executing an entire binary, thereby limiting use of

S2E for complete binary understanding.
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Binary Disassembly Block Coverage by Symbolic Execution vs.

Recursive Descent

1 Introduction

Computers are embedded within our most technologically advanced and expensive

military weapons. They monitor and control critical infrastructure and energy grids and

serve important roles in our nation’s hospitals, banks, and businesses. Simply put, they are

ubiquitous and irreplaceable in today’s society.

As the military is charged to protect this nation’s interests, it must be able to exercise

dominance in the computing domain. To do this, the ability to reason correctly in this

domain is critical. Reasoning means knowing all the potential functionality a device or

computer system possesses. The ever increasing complexity of computer programs

presents many challenges to the ability to reason.

1.1 Problem Background

The first problem with modern computing is that a high level of trust is given to

others. Independent corporations, individuals, and other entities together produce and

maintain the building blocks which abstract many fundamental computing problems away

from the user and even the computer scientist. Compilers, hardware drivers, and operating

systems are created incrementally, building on the work of previous generations and

previous effort. Because of the prohibitive cost, work, and time involved in creating

independent versions of these abstractions, abstraction layers largely produced outside of

the control of the military are used. Thus, there are ample opportunities for a clever and

1



malicious actor to assert control over a system during its production process, and even

afterwards.

The second problem is that even the most well-intentioned programmers are still

human, and so more complex software will on average contain a host of errors. A mistake

in the way a program is written which results in unintended functionality is called a bug.

Whether a crash is caused by a buffer overflow or a privilege is given to the wrong user,

bugs are dangerous realities in software development. They may result in a software

vulnerability, creating an opportunity for an attacker to exploit the code and run

unauthorized programs. To make matters worse, bugs are sometimes difficult to reproduce

and can depend on the individual hardware, environmental variables such as network

activity, or other complicated interactions which are hard to diagnose and correct.

A third problem with complex, highly-functional systems is they are often updated.

An important reason behind this constant-update mentality is to fix the bugs that have

been found after the software has been shipped to eliminate vulnerabilities and unintended

behavior. Another reason is to introduce new functionality. However, each time a piece of

software is updated, any previously achieved understanding about the functionality and

security that software offers is no longer valid. Patching or in any way updating software

can introduce new bugs while trying to squash the old ones, and with them new

vulnerabilities which were not present previously.

A fourth problem is one of magnitude. The path explosion problem (see

Section 2.3.3) in software can lead to an exponential increase in the number of possible

states in which a computer program can enter. Additionally, the memory contained within

even modest laptops found in stores today can easily reach 8 gigabytes (GB), which

corresponds to approximately 268719476736 different potential states. It is infeasible to

account for all the potential states a computer can enter into, and so a different method of

reasoning other than exhaustively validating each state individually must be used.
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To reason correctly about how computers operate, the software that runs on them

must be known. This task is made substantially easier if the source code is available. With

the source code, a program can be debugged as it is running, and values that the software

loads into memory can be observed, along with the values assigned to variables and

registers, as well as the functionality of each method. The source code can still be difficult

to interpret if the program’s author uses ambiguous or misleading names, values, and

assignments. And, especially on large software systems, the full functionality may not be

immediately apparent. However, regardless of how poorly the source code is written or if

it was created to be intentionally deceiving, a program’s functionality can be reasonably

ascertained with this valuable information. Without the source code, the software must be

disassembled into code that can be reasoned about, and this is much more difficult.

Instead of requiring knowledge about software and applying reason through that domain,

a reverse-engineering analyst must work backward from the program’s lowest functional

representation to determine the source code, and then reason about it.

1.2 Research Problem

The strategic issue is that the true functionality of a given piece of software is not

well understood. Empirical evidence of this is apparent in the vibrant research areas and

commercial markets of software verification, malware detection/analysis, and bug finding.

Determining the true and complete functionality of any software requires the use of

mathematical reasoning and deduction, and which constraint solving and symbolic

execution can theoretically provide.

1.3 Research Goals

This research measures the effectiveness of symbolic execution as applied to binary

analysis. It compares the disassembly generated by the industry-standard

reverse-engineering software Interactive Disassembler Pro Advanced (hereafter referred to

3



as IDA or IDA Pro) with the code translated and executed by S2E (the Selective Symbolic

Execution engine) during symbolic execution of the same real-world executables. These

same executables are obfuscated with a common packer, and the original executable is

used as a baseline for determining the applicability of S2E and symbolic execution in

general to obfuscated binaries, an area where IDA Pro and other static disassemblers have

a particular problem.

1.4 Document Outline

Chapter 2 reviews the literature relevant to this research effort, and provides

explanatory background information about S2E, the compilation process, and all related

goals and problems. Chapter 3 presents the experiment design and implementation of both

binary disassembly methods. Chapter 4 provides the results and an analysis of the

experiments performed on the system under test. Chapter 5 presents the summary of

research significance, avenues for future work involving this system, and research

conclusions.
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2 Literature Review

2.1 Introduction to Computing

Software development is a complicated process. There are several steps which must

be followed to transform a programmer’s source code into bits that the computer can

process. Therefore, it is important to set the groundwork for how software arrives as the

end product that users will execute – the compilation process itself. Literature on the

decompilation process which attempts to reconstruct the original source code (or any

higher-level, readable language) from machine code is presented. The decompilation

process is important for it also encompasses the disassembly process which is the core of

this research effort. Later sections describe decision procedures, symbolic execution, and

the recursive descent disassembly algorithm. Finally, the goals of these methods and their

issues are included.

2.1.1 Background.

2.1.1.1 Languages and abstraction. Assembly code is difficult for humans to

read and comprehend efficiently, even the well-understood and ubiquitous complex

instruction set computing (CISC) architecture of Intel’s x86 platform. CISC (as opposed

to reduced instruction set computing, or RISC) was originally designed as a processor

instruction set with a large number of possible operations done at the assembly code level.

In the earlier days of assembly code programming, these assembly instructions allowed

programmers to build complex functions with fewer operations, and was seen as a vast

improvement in computing since hardware design (mainly for the computer’s central

processing unit or CPU) was more advanced than the compilers of the time [ASU86].

The large number of functions available could theoretically increase instruction

“power” for performing complex operations requiring, for instance, only one operation in

5



contrast to the RISC approach of utilizing several simpler operations for the same

functionality. However, the CISC approach may incorporate some functionality that may

not be as efficient for processor hardware as several smaller operations are. The

widespread presence of both platforms (albeit in different computing environments)

speaks to each their important utility.

Nevertheless, CISC is more difficult for disassembly since the large number of

instructions it can handle is compounded by assembly instructions which can have

different byte lengths. Therefore, a disassembler must know where the first instruction

ends before attempting to disassemble the next one. In contrast, the popular RISC

architecture ARM has a fixed 32-bit instruction length [Ltd12], so that the start and end of

each instruction is trivial to identify.

The terms RISC and CISC is slowly being overtaken by the more descriptive

load-store and non-load-store, respectively. The load-store description refers to an

architecture’s inability to perform operations on data stored in memory directly – it must

first be loaded into the CPU’s registers before performing any arithmetic operations, and

then stored back to memory after completion. Non-load-store architectures can retrieve

data from memory, modify it, and return it to memory in a single (albeit more complex)

instruction [ASU86].

Assembly code represents a program at a low level of abstraction and reveals more

information about the hardware layer than data structures used in the program. The broad

logic or overarching goals of a piece of software is contained at as a higher level of

abstraction and is usually written in high-level languages easier for humans to understand,

such as C/C++ or Java.

As compiler technology caught up to the advances in CPU technology, the prevailing

notion that the assembly instruction set needed to be complex disappeared. Compilers

allow the programmer to use a high-level language which abstracts away tedious and
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repetitive tasks necessary in assembly language programming, and allows the use of

advanced data structures, common libraries, and the ability to think at a more strategic

level while writing more advanced and complex software. This software is transformed via

compilation into low-level assembly and eventually machine code for the processor to run.

2.1.2 The Compilation Process. Before a piece of software can be run by the

operating system, it must be compiled to execute in the execution environment [Eil05].

This execution environment can be software-based (e.g. virtual machines) or

hardware-based (with the target code natively executing on the CPU), but it requires

appropriate machine code to be produced before running the software.

At its most basic level, software compilation translates a program from its original

source language to a different target language [ASU86]. In most cases and in its most

common usage, this means compiling an abstract high level language to a low level

language. The use of compilers has allowed software developers to focus on building more

advanced code in shorter amounts of time, with greater readability and understanding of

the source code resulting in fewer unforeseen errors (bugs) and greater functionality.

The compilation process can be separated into three phases: the front end, mid-end,

and back end. The front end contains the steps which depend on the source language. It

translates them to a known intermediate language or intermediate representation (IR). The

mid-end takes the intermediate representation as input and optimizes it, reducing code

complexity and duplication, in a hardware independent manner. The final phase contains

all necessary steps to convert the product of the mid-end, the optimized intermediate

representation of the source code to machine code.

Within the front end, there are four parts: lexical analyzer, syntax analyzer, semantic

analyzer, and intermediate code generator. The mid-end is composed of the code

optimizer, while the back end contains the target code generator. Also present throughout
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all phases is a symbol-table manager, which records identifiers and their attributes, and an

error handler which detects and records errors found during compilation [ASU86].

For the next sections, the stages of compilation will be illustrated using the following

example program expression:

Example: answer := base * constant + 3.5.

2.1.2.1 Front-End. The phases of compilation allow a high degree of

modularity. To compile several different programs written in several different languages

on a singular architecture, theoretically all that is needed is a new front-end for each

language assuming the intermediate representation provided by the mid-end can

sufficiently represent all source language statements.

Lexical Analyzer. The lexical analyzer groups the characters of the source code into

lexical units. These units can be identifiers, operators, punctuation, or other source

language symbols. Comments within the source code are ignored [Seb99]. In the above

example, the following lexical units are produced: id 1, id 2, id 3, :=, +, *, and 3.5.

Syntax Anaylzer. The syntax analyzer takes the lexical units produced and creates

structures called parse trees. These parse trees are hierarchical representations of the

syntax of the source code [Seb99] [ASU86]. Using the example above, the following

parse tree would be created:

Semantic Analyzer. These parse trees are used by the semantic analyzer to check for

errors other than syntax. It can, for example, detect if an incorrect type was used when

declaring variables [Seb99]. In the example expression, if “answer” was declared as an

integer instead of a floating point number or another representation capable of handling

the addition of 3.5, the semantic analyzer would detect this and throw an error.

Intermediate Code Generator. The intermediate code generator produces a

translation of the source program into a language that is 1) easy to produce, and 2) easy to
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Figure 2.1: The resulting example parse tree.

translate to the target machine language. In this case, the intermediate code may look

something like this:

temp1 := floattoreal(3.5)

temp2 := id3 + temp1

temp3 := id2 * temp2

id1 := temp3

2.1.2.2 Mid-End. Before optimization of code in the mid-end, a common

intermediate representation used for the entire process must be agreed upon for the

transformation between front end and mid-end, and also between mid-end and back end.

The efficiency of the entire process (from source language to target language), as well as

the final performance of the produced target code, depends on the selection of the

intermediate representation. This step in the process is not “swappable” in the sense that
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changing the mid-end requires a change of front end and back end to accommodate any

new intermediate representation.

Code Optimizer. The code optimizer attempts to improve the performance of the

intermediate code when run as machine code. In the example, the code optimizer would

modify the intermediate code by combining many of the assignments from the

intermediate code generator into more efficient statements:

temp1 := id3 + 3.5

id1 := id2 * temp1

2.1.2.3 Back End. The back end is the final piece of the process, and unlike

the mid-end is interchangeable. Given code in C, it is entirely possible to emit assembly

code for different architectures as only the back end of the compiler must be switched.

Target Code Generator. The final step in the compilation process from source code

to target code is the transformation from the optimized intermediate code to the target

code [ASU86]. In this case, the target code is assembly language, a mnemonic version of

machine code, in which names are used instead of binary codes for operations [ASU86].

MOV ID3, R2

ADD 3.5, R2

MOV ID2, R1

MUL R2, R1

MOV R1, ID1

2.1.2.4 Related Steps to Compilation. Although compilation is traditionally

implemented as an independent process, other steps may be necessary.
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Preprocessors Preprocessors create input for a compiler by modifying or enhancing

the source program at the front end. They can process macros which extend shorthand

blocks of code to longer blocks. Preprocessors fetch and include header files that are

integral to the program, e.g. “#include <stdio.h>” for C. For older languages,

preprocessors provide the user with newer data and flow control concepts that enhance the

capabilities of an older language which may be missing them.

Loaders Loaders are responsible for two tasks at the back end of compilation. These

tasks are performed on relocatable machine code. Loading alters the addresses of

relocatable machine code to place these instructions at the proper addresses in memory

while link-editing creates a single program by linking together relocatable machine code

from several different files.

2.1.3 The Decompilation Process. Decompilers are structured in much of the

same manner as compilers, with the goal of transforming the source program to another

language, the target language. Compilation traditionally translates code from a high level

of abstraction to a low level for execution. Therefore, it is logical to assume that

decompilation is used in the opposite direction: to convert low-level code such as machine

code to a higher-level language such as C++ or assembly, for examination and analysis.

This process, too, is separated into three phases: the front end, the universal decompiling

machine (UDM), and the back end [Cif94].

2.1.3.1 Front End. The front end of a decompiler contains

machine-dependent analysis, but there are some differences compared to to regular

compilers. First, there is no lexical analysis or scanning required, since all code is

low-level machine language; any other level of abstraction language would use a normal

compiler to group characters but in machine code there are only bytes, which could stand

for data, an address, or an instruction.
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Syntax Analyzer. Binary code is fed as input into the syntax analyzer, where it is

structured into a hierarchical tree in a similar manner to the compiler. This structure

requires machine-specific heuristics to determine its type (instruction, data, or address) of

the next byte.

Semantic Analyzer. The semantic analyzer checks for semantic meaning of groups

of instructions. Interpreting idioms (also known as idiomatic expressions) is a large part of

this task. Idioms are entities of code which form logical operations but cannot be derived

solely by considering the primary meanings of their instructions [Cif94]. For example, the

idiomatic expression of shifting a register to the left or right is widely known as a shortcut

for integer multiplication and division, respectively. A semantic analyzer must correctly

interpret such a shift as the correct mathematical operation instead of a restructuring of its

registers. There should never be semantic errors in the machine code if it was compiled,

so if errors do arise they are most likely due to the semantic analyzer parsing the

executable incorrectly.

Intermediate Code Generator. The semantic analyzer feeds its output to the

intermediate code generator, which must create an explicit and precise representation of

the source language in the chosen intermediate language. It must also be able to produce

accurate translation of the source program in the target language. For most cases, a

three-address code representation is preferred. This intermediate language allows three

operands and can be represented by machine code and therefore a high-level language

completely, without approximations [Cif94].

Control Flow Graph Generator. Once the low-level source code is represented in

the IR, the control flow graph generator helps the decompiler to analyze the control flow

of each subroutine. Assuming the IR is capable of representing any high-level control

structures present within the program, it will attempt to achieve code length efficiency

gains. For instance, in assembly language the maximum offset or distance for a
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conditional jump is limited because it must be mapped explicitly to memory unlike in

high-level code. Often, assembly code will piggyback multiple jmp commands to the

conditional jump so that it can be pushed further away than an explicit offset will allow.

The control flow graph generator will recognize these successive intermediate jumps and

set the conditional jump to the final address.

2.1.3.2 UDM. Just like the intermediate stage of the compiler, the universal

decompiling machine is an interchangeable module that is independent of both source and

target languages. There are some practical limitations to this theoretical approach of

interoperability between several possible front-ends and back-ends, but these potential

inconsistencies are dependent on the generality and expressiveness of the intermediate

language used by the UDM. The UDM includes two components: a data flow analyzer

and a control flow analyzer.

Data Flow Analyzer. The data flow analyzer improves the intermediate code so that

high-level expressions can be found. Any reference within the IR of registers or CPU

condition flags is eliminated as these concepts cannot be accessed directly by high-level

languages. Thus, any assignment statements to a register are combined and assigned to the

memory location from which the assignment originated. Arithmetic operations are

likewise combined, using these memory locations and immediate values without including

the previously-utilized registers. Other intermediate language instructions such as push

and pop are also eliminated and replaced [Cif94].

Control Flow Analyzer. The control flow analyzer structures the control flow graph

of every subroutine into terms of a generic high-level language [Cif94]. Only universal

control flow structures are used, such as if..then..else statements, for() loops, and

while() loops. Any language-specific implementation of control flow is not used, as it

could not be faithfully translated to any target language thereby violating the modularity

of the decompiler.
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Figure 2.2: Generic Control Flow Constructs

2.1.3.3 Back End. The back end of a decompiler is the final phase in the

translation to the high-level target code. When decompiling, the choice of output into

several languages may give the reverse engineer additional information or insight into the

program structure, or may make analysis more efficient for others who are more familiar

with a different high-level language. Because of the decompiler’s previously described

modularity, this multiple-target decompilation is possible.

Code Generator. The final step in the decompilation process generates the target

high-level code itself. The code generator accomplishes this using the control flow graph

produced earlier, as well as the intermediate code of each subroutine in the program. It

chooses variable names for the stack, argument, and register-variable identifiers, and

selects subroutine names for each routine. Control constructs recognized in previous steps

are translated to their respective high-level statements [Cif94].

2.1.4 Disassembly. Perfect decompilation of a binary to the original source

language undoubtedly offers the most straightforward method for analysis. However, this
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is impossible with current techniques. Disassembly is widely viewed as a more

manageable problem, but due to the intermingling of data with instructions, there is (in

CISC architectures such as x86) the real possibility of having more than one plausible

disassembly. Disassembly therefore reduces to the Halting Problem and is not solvable in

general [HM79]. Several static disassembly algorithms have been proposed for most

efficiently solving this problem, and they are described below.

2.1.4.1 Linear Sweep Disassembly. Linear sweep disassembly is by far the

most straightforward, though its use in variable-length instruction sets like x86 is not

recommended. Linear sweep begins disassembly at the first byte in the code section and

moves linearly through the section, one instruction at a time until the entire code section is

complete. It keeps track of a pointer at the beginning of each instruction which allows it to

determine the current instruction length. This is helpful for fixed length instruction sets

(e.g. MIPS, ARM). It does not attempt to account for control flow, but it does provide

complete coverage of the program’s code sections. It cannot account for data that is

sometimes comingled with code, and so in variable-length instruction sets it may confuse

a piece of data for a new instruction. This type of disassembly is provided by GNU

debugger (gdb), Microsoft’s WinDbg, and the Linux objdump tool [Eag08].

2.1.4.2 Recursive Descent Disassembly. Recursive descent disassembly

focuses on the concept of control flow and determines whether or not an instruction

should be disassembled on the basis of references from other instructions. This is easy

with simple sequential flow instructions like add, mov, push, and pop, and linear sweep is

used in these cases. In cases where control flow branches to a known point (a direct

branch), such as the x86 jnz (jump if not zero) instruction, both branches of the

conditional will be disassembled. If a conditional depends on runtime values, such as x86

jmp eax requiring a jump to the value stored in register EAX, these values cannot be
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computed in static disassembly. Such a jump (or call eax or ret) depend on the values

of registers or the stack at runtime and are referred to as indirect branches. In these cases,

IDA Pro and other static disassembly methods that use recursive descent cannot properly

continue disassembly, and must halt. Whenever a series of instructions is finished

disassembling or can no longer be followed, the algorithm chooses a new series of

instructions to continue disassembling, giving this method its recursive characteristic

[Eag08]. Recursive disassembly may not always provide complete disassembly due to the

presence of indirect branches, but its ability to distinguish code from data by following the

control flow of a program is a distinct advantage over linear sweep.

2.1.5 Application of Formal Logic to Software. There are two distinct methods of

reasoning through the rigorous basis of formal logic. The model-theoretic or “Model

Checking” approach enumerates all possible solutions from a finite number of candidates.

The proof-theoretic or “Theorem Proving” approach uses a deductive mechanism of

reasoning based on axioms and inference rules, which when used together form an

inference system [KS08]. These two methods of reasoning are the basis for propositional

logic and provide mathematical soundness and completeness.

When reasoning about computer systems, several considerations must be made. If the

number of system states is finite, Model Checking can be used and the problem is

decidable. However, in real systems, the number of possible machine states with respect

to input is astronomical, on the order of 2n where n is the number of memory address bits.

For 8 GB memory as is ound in many laptops, the number of possible states becomes

268719476736, a number larger than the number of atoms in the universe. This is important

because it means that checking each of these states becomes infeasible, and a different

strategy must be used to formally verify these systems.

First-order logic solves this problem by ordering all possible states into sets, and

reasoning about these sets of states. Symbolic execution is an extension of first-order
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logic; it is a sequence of state transitions represented by Single Static Assignment (SSA)

form. SSA form is a widely used representation for compiler optimization and greatly

simplifies dataflow optimizations [Lat02]. A program is in SSA form “if each variable is

defined exactly once and each use of a variable is dominated by that variable’s definition

[Lat02].” As explained in Section 2.1.5.4, Low-Level Virtual Machine (LLVM) is a

suitable choice for the intermediate representation (IR) of a symbolic execution engine

largely because of its adherence to SSA form.

2.1.5.1 Constraint Solving. Satisfiability is a fundamental problem in

computer science. It measures whether a formula expressing a constraint can produce a

solution, and is found in hardware and software verification, type inference, test-case

generation, and other problems [dMB09]. Propositional satisfiability (SAT) is the most

popular form of constraint satisfiability problem. The goal of SAT is to decide whether a

formula created from Boolean variables and logical connectives can be made true by

choosing Boolean true/false values for its variables [dMB09].

At the most basic level, this research is most interested in binary analysis – the ability

to determine exactly what functionality a given binary executable is capable of without

access to its source code. To make this decision, the program must be represented as a

series of mathematical statements. These statements are most often expressed as formulas

which use first-order logical connectives, variables, quantifiers, functions and predicate

symbols [dMB09]. Satisfiability Modulo Theories (SMT) problems are examples of these

logical first-order formulas and are also known as decision problems.

2.1.5.2 Decision Procedures. A decision procedure is an algorithm that when

given a decision problem, returns with a simple (and correct) yes/no answer. If yes, the

decision procedure will also return a satisfying assignment [KS08]. Decision procedures

have traditionally been used in hardware verification and analysis, for testing paths
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through a circuit and verifying its functionality correctly matches the specification through

each path.

Decision procedures can also be used for the logic of computer software. Advances

in the decision procedures for bit-vectors (the binary method in which values and data are

stored on computers) and arrays (an important data structure for organizing this data) have

led to their adoption in automatic theorem provers and SAT solvers [KS08][GD07]. The

theories considered most promising in the bit-vector and array decision procedures are

still difficult; the problem of deciding them is NP-complete [KS08].

2.1.5.3 Symbolic Execution. Symbolic execution is an automated approach to

testing and analysis based on the paths found through a program. It substitutes program

input with symbolic values and manipulates these instead of performing traditional

operations on a given input. Values are generated to satisfy symbolic constraints generated

during the execution path, which are then solved by SMT solvers [KHL10] [FCN+10]. All

possible paths through a program are taken and symbolized until path termination or a bug

is found, generating a test case for the condition found.

This approach is limited given the sheer number of possible paths that will need to be

represented by the symbolic execution tool. These possibilities are generated by the

exponential number of paths through which execution could flow, and the entropy

introduced by any environment the program must run within (user, network, hardware,

etc). The former problem, known as path explosion (see Section 2.3.3), can be mitigated

but not eliminated with symbolic search heuristics and other methods to determine which

paths are more likely than others. Other approaches include limiting symbolic execution

to a more reasonable domain.

2.1.5.4 LLVM. The Low Level Virtual Machine, or LLVM, is a compilation

framework based upon the LLVM intermediate representation (IR). The LLVM IR offers a
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limited degree of architecture independence for several languages and is the language to

which a source language is optimized before the transformation to the machine code of a

specific architecture. LLVM [Lat11][Lat02] is widely utilized in a modular compiler

architecture, with the ability to serve as the mid-end for languages such as C, Ada, C++,

and even ARM assembly. Previous research such as ABACAS (the

Architecture-independent Binary Abstracting Code Analysis System) [Sco11] focused on

translating ARM assembly to LLVM using traditional disassembly techniques.

From this mid-end, LLVM can be compiled to run on architectures ranging from

Intel’s x86 to ARM to server-specific Itanium processors. Along with its flexibility,

LLVM also brings impressive performance, matching and even outperforming GCC in

compile time as well as execution speed [KLMK10].

2.2 Goals of Disassembly and Symbolic Execution

The most important question to ask when covering reverse engineering is “Why

reverse?” Improvements to reverse engineering techniques and advancements in

understanding are useful. But there are several practical reasons for achieving a high

degree of understanding in these areas.

2.2.1 Offensive. The first major reason for reverse engineering is to manipulate

code. When a bug is found in code special exploits can be crafted to take advantage of it,

whether it be in the operating system or an application. Studying the inner workings of

Microsoft Windows or Adobe Reader has yielded thousands of malicious viruses, botnets,

and Trojan horses, specifically targeted to attack certain configurations, yet widespread

enough to cause millions of dollars in productivity and infrastructure damage [Eil05]. In

the right hands, this knowledge creates a unique opportunity for intelligence gathering and

a method to impose our will upon other organizations or countries in a non-violent

manner.
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2.2.2 Defensive. This information can also be very dangerous in the wrong hands.

Therefore, it is equally important to apply expertise to the defense of computers,

networks, and intellectual property by finding unexpected flaws and faults in the software

so they can be quickly and comprehensively patched before disclosure to the public (and

by default the hacking community), thus saving computer systems from potential

exploitation. It is equally important to identify and detect malicious code on a computer or

computer network. Through reverse engineering, patterns emerge in malicious programs

that can be used as signatures [Eil05].

2.2.3 Understanding. Reversing also helps programmers learn from the work of

others. By examining the methods used to solve a particularly advanced problem, students

become experts themselves. This is a very useful method of learning, and helps develop a

strong base of code knowledge [Eil05]. Understanding code also discovers new potential

features that the original developers never considered. The creativity that comes from new

eyes on a piece of code can contribute to new and innovate opportunities for the original

program.

2.2.4 Future-Proofing. The majority of reversing work happens on x86, with

relatively little on the new ARM architecture. Mobile computing is a newer market, and

thus reverse-engineering software is not available on all traditional platforms. It is of the

utmost importance, though, to establish and cultivate experts in fields that have a strong

potential for growth and adoption, to mitigate potential threats. Mobile computing has

proven itself to be one of these explosive areas, and thus the familiarity with ARM-based

reversing will enable future offensive and defensive capabilities understanding.

2.3 Issues with Disassembly and Symbolic Execution

Although the perfect recreation of source code from machine code would be optimal,

there are limits to what can actually be obtained. The compilation process is destructive,
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obliterating comments, redundancies, and other structures that could be useful to analysts.

There are some techniques that can recover the original meaning and functionality of the

code, despite often-imperfect results.

2.3.1 Data Type Inference. A common problem in reverse engineering is the

abstraction of data types originally present in source code are stripped during the

compilation process. Inferring these types is known as type reconstruction. This

reconstruction is extremely helpful to an analyst but difficult because of optimizations

made to map data to registers and the global memory of the system. There are two parts to

this problem: variable recovery and type recovery [LAB11].

2.3.1.1 Variable Recovery. Variable recovery identifies the high-level source

code variables from low-level machine code [LAB11]. This is straightforward as each

new parameter passed to a function is accessed via ebp offsets, and each unique offset

(e.g., 0xC and 0x10) signifies the existence of a unique parameter.

2.3.1.2 Type Recovery. Type recovery associates a high-level data type to

each variable. This is much more challenging because these types are usually discarded by

the compiler. Solutions have been proposed in both the commercial and research fields for

this problem.

IDA Pro. Hex-Ray’s IDA Pro [HR11], for instance, includes a disassembler which

uses proprietary heuristics to infer a type. However, these heuristics are often inaccurate,

classifying unsigned int and unsigned int * as int. This misidentification of

signed data types appears to be IDA Pro’s default behavior [LAB11].

REWARDS. Another approach called REWARDS [LZX10] follows a single path of

execution using dynamic analysis. The restriction of the analysis to a single path was

made in anticipation of the difficulty of determining and keeping track of a program’s

control flow [LZX10][LAB11]. REWARDS uses information from executed “type sinks”
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which are common function calls with known types. For instance, a call to strlen would

mean that the type of this function’s argument is a const char *, since this is the only

type that strlen will accept. Any assignment from this argument to another variable

means that this new variable has the same const char * type.

However, REWARDS cannot handle control flow and therefore is unable to perform

the commonly-utilized reverse engineering method of static analysis. Additionally, its

approach cannot be run multiple times dynamically since that would require control flow,

which is determined via static analysis [LAB11].

TIE. A new inference-based approach, TIE (for Type Inference on Executables) uses

several “hints” or indicators about the way the code is used. For example, TIE checks the

signed flag to infer whether two operands are signed in an arithmetic operation [LAB11].

From these hints, TIE builds a series of formulas that are solved revealing data types more

conservatively and accurately than REWARDS or IDA Pro. TIE lifts the assembly code to

binary analysis language, then uses variable recovery to identify potential variables in the

code. It then builds its formula-based constraints, based on aforementioned hints. It solves

the constraints to the greatest resolution possible, leading to both precise and conservative

results [LAB11].

2.3.2 Data Structure Recovery. A useful high-level language incorporates data

structures such as strings, arrays, lists, stacks, trees, and queues. These differ from data

types in that they cannot be manipulated directly from assembly language. Data structures

are collections of primitive data types such as characters, integers, and floating point

numbers. During compilation, these structures are obliterated as they are stored in

memory, assigned as the compiler sees fit to increase the speed of execution.

2.3.2.1 Static Analysis. Some approaches to data structure recovery use

locations in binary that appear to be variables, and then estimate the values they hold. This
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Value Set Analysis (VSA) uses interpretation to give a best estimate of sets of values

[SSB11]. Its algorithm tracks both addresses and integers simultaneously, creating

over-approximations of both addresses and the set of integer values that could be held at

each point in the program [BR04]. The actual locations are difficult to identify explicitly

in these interpretations, so another technique called Abstract Structure Identification (ASI)

observes the manner in which memory is accessed by the program. Consider a particularly

large segment set aside for local variables with a short, few-byte access made midway

through the segment. ASI would conclude that the segment is made of a short few-byte

variable, surrounded by two larger arrays. It also uses the type signatures of well-known

functions to determine their types automatically in a similar manner to REWARDS but

during static analysis rather than dynamic [SSB11].

CodeSurfer/x86. Both VSA and ASI are used in an experimental IDA Pro plug-in

called CodeSurfer/x86 [Res11][BR04]. This tool can browse, inspect and analyze x86

executables and recovers IRs from these executables as if they were retrieved midway

through the compilation process.

2.3.2.2 Dynamic Analysis. Unlike static analysis, dynamic analysis only

inspects code that will be run. Three popular tools for doing this are Laika, REWARDS,

and Howard.

Laika. Introduced as a tool to analyze various self-modifying viruses, Laika fixates

on the idea that internal data structures are reused throughout code. It avoids code

polymorphism present in samples and instead detects botnets through their use of the

same internal data structures [CSXK08]. By identifying potential pointers within code and

the structures that follow them. If, for instance, the structure (up until the next pointer is

observed) ends in a null-termination and is a series of ASCII characters, it is probably a

string. It uses this logic for all kinds of potential data structures. However, its detection

23



method is imprecise because it does not detect the fields in the structures, making Laika

unsuitable for reverse engineering [SSB11].

REWARDS. The aforementioned similarity between ASI and REWARDS is used in

data structure recovery to identify well-known functions. Unfortunately, REWARDS is

incapable of detecting and identifying internal data structures or structures that are created

and used exclusively by a particular program [SSB11].

Howard. A more recent approach to data structure recovery borrows from many of

these ideas and is named Howard. Howard uses clues from pointer memory access to infer

the layout of data in memory. Pointers are used for all memory access, whether it be

through direct addressing or indirectly through a CPU’s registers [SSB11]. For example, if

a program accesses memory at point A, then *(A + 4) is probably an element in this

structure. If the structure is an int [] array, it has accessed the second value in the array

[SSB11].

2.3.3 The Path Explosion Problem. Using symbolic execution engines fails to

scale to large programs because the number of execution paths that must be symbolically

considered is so large that only a very small portion of the program’s entire execution tree

can actually be reached. This problem is caused mainly by the presence of loops,

conditionals, and nested calls in the program and therefore is a difficult problem for

modern software analysis [KHL10]. These high-level programming constructs cause the

number of paths to increase exponentially as the program executes, which then requires

symbolic execution to represent and solve an exponentially increasing number of program

states [CDE08].

2.3.4 Obfuscation. Software obfuscation attempts to hide the true functionality of

a program, preventing analysis and understanding by entities which do not possess the

source code. One of the most common types of obfuscation, packing, is designed to
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bypass detection or code fingerprinting by most antivirus tools, and is also very easy to

apply to compiled code. The remainder of this section addresses packers and the

techniques employed which make packed executables very difficult to detect.

2.3.4.1 Packing. Packing is a method originally designed to compress a

binary program so that it occupies less disk space, preventing potential issues with moving

large binaries. However, malicious usage of this technique has made detection of

malicious software (or malware) difficult. The packing concept is illustrated in Figure 2.3.

Figure 2.3: The inner workings of UPX (Universal Packer for eXecutables), a common
packing tool, on a Windows binary. Image source: GFC08

First, the executable is packed. This process combines the program header, code

section, and data section into the Packed Data section of the new binary. Compression
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techniques allow a substantial reduction in disk space usage for modest-sized programs

[OMR12]. The new packed (or compressed) program consists of a new header, a virtual

address space which adequately holds the content from the original binary’s code and data

sections (UPX0), the packed data itself, and unpacker code (both in UPX1). For resources

that cannot be compressed, an extra resource (rsrc) section is added. The new header

points directly to the unpacker code, skipping the empty sections where the real

functionality of the program is loaded.

When the new compressed binary is run, the program header launches the unpacker

code first. The unpacker loads the code and data sections into the virtual address space,

UPX0, created earlier during the packing process. This code is functionally equivalent to

the uncompressed version, but does not have the same signature. Static disassembly tools

such as IDA Pro would show the unpacker code, unaware of where and how the original

binary would be loaded into memory.

2.3.4.2 Techniques. Compressing an executable with a packer like UPX

introduces an added level of complexity for binary analysis. But with a method for

detecting the packer and the version used, unpacking the software becomes easier. For this

reason, many malware authors add several layers of packing to their software, requiring

the use of a series of unpacking tools in the correct order to reach the real binary. A

general expression for multilayer packing of an executable is

X
F
→ F(X)

G
→ G(F(X)) (2.1)

where X is the executable, F(X) is the binary packed with the F packer, and G(F(X))

is F(X) after being compressed with packer G. The recovery of the original binary from

this multilayer packing is

G(F(X))
G′
→ F(X)

F′
→ X (2.2)
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where G’ is the unpacking option of packer G, and F’ is the unpacking option of

packer F. To recover the original executable, it must be unpacked first by G’ and then by

F’. The unpacking operation is not a commutative operation, and therefore must be

performed in reverse order of the binary that was packed.

Compounding the difficulty is a malware author’s use of a proprietary, closed-source,

or custom packing tool. In this case, there is no official method for extracting the original

code, it would require a just-in-time antivirus scanning tool such as Justin [GFcC08] to

determine if the file is contains previously-identified malicious software. Malware

analysis on a binary compressed within a custom packer would require manual debugging

with a tool like OllyDbg [Yus11], and extend efforts to determine even basic functionality

of the program.

2.4 Summary

Reverse engineering is an increasingly important aspect of protecting and securing

networks and data. By reversing the usual compilation process of a executable program to

produce disassembly, analysts can then more easily observe its execution, and therefore

determine its functionality. This derived understanding can be used to patch vulnerabilities

in software to prevent attacks that exploit these vulnerabilities. The information gleaned

from reverse engineering is also a valuable learning tool as it can reveal methods used by a

sophisticated piece of malware, allowing security experts to recognize and stop similar

attacks from damaging our computer systems before they occur.
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3 Experimental Methodology

Reverse engineering of binaries is a relatively mature albeit manual process for

traditional computing platforms such as the Intel x86. However, it is also extremely

labor-intensive and highly dependent on an analyst’s proficiency and can require several

tools to accomplish adequately. S2E provides an automatic, single interface for binary

path exploration and analysis.

3.1 Problem Definition

3.1.1 Goals and Hypothesis. The overall goal of this research effort is to

determine the effectiveness of symbolic execution as a method for binary analysis. Basic

block and function block code coverage of a binary’s disassembly based on symbolic

execution versus industry-standard static disassembly tools is the primary metric. This

effort uses the S2E Selective Symbolic Execution Engine [CKC11][CKC12] and a plugin

built for that framework called init env that analyzes even proprietary and closed-source

Linux binaries so the disassembly effectiveness can be evaluated over a range of

obfuscation levels. Binaries at several levels of obfuscation are analyzed as obfuscation

presents a particular problem for static disassemblers such as IDA Pro.

It is expected that block coverage achieved during symbolic execution will remain

constant over increasing obfuscation levels. It is also expected that the block coverage of

static disassembly will be high on unmodified binaries, but drop dramatically as

obfuscation is introduced. The results of this research will determine whether utilizing

symbolic execution will expose more functionality than static disassembly techniques on

an obfuscated binary. This chapter describes the methodology for evaluating the S2E

system and that the research goals have been met.
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3.1.2 Approach. The research hypothesis is tested by submitting a variety of

binaries to static disassembly as well as symbolic execution. Each binary is obfuscated at

different levels using the Ultimate Packer for eXecutables (UPX), and re-run through both

disassembly methods. After symbolic execution is complete, offline tools generate the

different execution paths found, complete with PC address forks taken by S2E to create

new states, and the PC addresses of each translation block executed.

Using the number of basic blocks found by IDA Pro as a baseline for uncompressed

binaries, provides a high degree of assurance that the entire state tree has been exhausted

and thus that all potential paths have been exposed. This meets the research goal of

determining whether selective symbolic execution is an effective alternative to static

disassembly relative to current methods of analysis.

3.2 System Boundaries

The System Under Test (SUT) is the S2E selective symbolic execution framework.

S2E consists of a customized virtual machine, a dynamic binary translator based on

QEMU [Bel11], an embedded symbolic execution engine [CKC11][CKC12], a plugin

architecture with several example plugins, and a suite of post-execution analysis tools. An

detailed overview of the individual components which make up S2E is presented in

Figure 3.1.

The workload submitted to S2E is comprised of several levels of compressed

binaries. These are individually submitted to S2E and selected during runtime with the

init env.so library which overrides the start of the function to insert symbolic

execution boundaries around the binary as it is loaded into memory [CKC11][CW12].

These boundaries are interpreted by the S2E-modified QEMU system emulator, which

translates the code within the boundaries to LLVM for later analysis by KLEE, or to the

host’s native machine code for efficient execution. As the code is executed in either the
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Figure 3.1: System Under Test: The S2E Selective Symbolic Execution Framework.
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symbolic or actual domains, new states are created for new execution paths. These states

are shared and updated as either execution method progresses. After S2E has finished

(either due to finding all the possible states of a program, or by running out of memory), it

outputs a series of files for use by post-execution analysis tools [CKC11][CKC12].

This research is limited to x86 binaries on Linux which accept input from the

command line using the init env plugin as a driver for the process. The instruction set is

limited to x86 because S2E does not currently offer official support for the ARM

architecture, though experimental modules are under development for this purpose

[CCKK12]. Since init env is the only available plugin which allows Linux binaries to

be symbolically executed without prior instrumentation and it currently supports only

command line arguments, the testing setup is limited to the command line.

3.3 System Services

S2E service is the symbolic execution of a binary, with an output of its complete

execution trace. Ideally, the system symbolically executes any x86 program flawlessly

with complete functional equivalence, but environmental variables (e.g., network activity,

system state, the user) and theoretical limitations (e.g., path explosion) can introduce too

many paths for the system to execute within a feasible amount of time. Within the service

of selective symbolic execution, there are several sub-services: selection of code to be run

natively or symbolically, dynamic translation to LLVM for symbolic execution, symbolic

execution itself, statistical run generation, and coverage generation.

For efficient and accurate decompilation, an appropriate target intermediate language

must be available. The Low-Level Virtual Machine (LLVM) IR has emerged as a capable

mid-end target with a precise compiler infrastructure built around it.

3.3.1 Dynamic Binary Translation. This service is provided by the S2E-modified

version of QEMU. Previous research has used the QEMU system emulator to dynamically
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translate x86 machine code to LLVM during execution [CC10]. With the appropriate front

end, this research can be extended to any machine code language that LLVM can

represent. The entire symbolic execution framework is dependent on this Dynamic Binary

Translator (DBT) to offer an appropriate level of selectivity, separating the program of

interest from system libraries and operating system code so that only the former is

symbolically executed. To accomplish this, S2E defines a series of S2E-specific

commands that are interpreted solely by the DBT: s2e enable forking and

s2e disable forking. These two commands mark the beginning and end, respectively,

of the code section sent to KLEE for symbolic execution instead of being natively

executed by x86 hardware.

Earlier versions of S2E required the explicit inclusion of these commands within

source code; the init env plugin (later included with S2E source as a guest library)

changed that requirement by placing them dynamically around the program at run-time.

These commands appear to the compiler as processor opcodes, but are in fact unused and

therefore ignored during compilation, only to be interpreted by the modified QEMU as

code that should be passed to KLEE for symbolic execution.

3.3.2 Branch Concretization. This service is necessary to explore different

branches along a code path. When KLEE reaches a condition, it must take one of the

possible paths for execution to continue. Branch concretization changes a symbolic

argument to a concrete one that meets the condition for taking the branch. When this

condition is met, the branch is taken, and S2E forks the entire execution state with an

S2E-specific instruction. Processor register values, contents in memory, and the current

condition taken are saved so that when switching to this new state S2E knows to take the

alternate branch instead.
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3.3.3 Branch Selection. This service is provided by KLEE. Its path selection

mode is set at random and therefore may not always result in the same number of paths

per unit time. The individual branch taken at a conditional is random in the sense that

there is no set algorithm (e.g., breadth-first or depth-first) that must be followed [CDE08].

3.3.4 Dynamic State Translation. This service preserves the entire execution state

as values are changed from symbolic to concrete and vice versa by S2E’s manipulation of

the state object which is shared and then updated between KLEE and QEMU. This service

is extremely important to preserve the selective nature of S2E’s symbolic execution;

current values for all methods must be constantly maintained in either the symbolic or

concrete domain to continue execution. For example, if a function is part of the program

being symbolically executed, and the program calls a outside library to perform some

operation on a value used by the function, it must be converted to an appropriate value in

the the concrete domain, and then returned to the symbolic domain once the library has

finished processing it [CKC11][CKC12].

3.3.5 Constraint Solving. Once translated to LLVM, the KLEE symbolic

execution engine takes over, running the code marked for symbolic execution through

Simple Theorem Prover (STP), a constraint solver. STP is optimized for bit-vector

arithmetic and arrays, two of the most important ideas in basic data storage in computing

which are also common bottlenecks in software verification and bug-finding applications

[GD07].

3.3.6 Statistical Run Generation. This service is provided by KLEE. As each

binary is symbolically executed, KLEE reports the number of current states, translation

blocks (concrete and submitted to KLEE), CPU instructions, time spent in user mode,

querying, solving, and forking, and memory usage among other things. This information

is important for determining the performance of KLEE itself and where any performance
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bottlenecks occur. Successfully generating these run statistics imply success in all other

previous services since this service depends on those.

3.3.7 Coverage Generation. To analyze S2E’s basic block code coverage the

binary is loaded and stored onto the QEMU guest’s disk image. Then, S2E-modified

QEMU is run with the binary selected and any options and plugins desired. As the binary

is symbolically executed, S2E creates and maintains an execution trace file

(ExecutionTrace.dat) along with several log files about the run. Separately, the same

binary must be opened with IDA Pro and analyzed with the extractBasicBlocks.py

script, included in Appendix B.2. The post-execution coverage tool is then run, and

requires the ExecutionTracer.dat file, .bblist file, and the executable itself. By

comparing these basic blocks to those generated by IDA Pro, the total code coverage is

obtained. This is dependent on success in all other services except statistical run

generation.

3.4 Workload

The workload for the system is a collection of three sets of files. The first is the

x86-based binary files compiled for and bundled within the 32-bit Debian/GNU Linux 5.0

distribution (see Section 3.10). These real-world binaries provides assurance that the

results are not purely theoretical but instead reflect potential performance for future usage

on unknown binaries.

The second and third sets are comprised of the first set, but obfuscated using the UPX

packer at levels -5 and --best. The submission of workload is not a function of time;

only a single binary can be submitted at a time.
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3.5 Performance Metrics

3.5.1 Measured Performance. The following performance metrics measure the

effectiveness of the S2E system on native (uncompressed) binaries.

• Basic Block Coverage (%BBCov): The percentage of all disassembled basic blocks

symbolically executed by S2E. A basic block is defined as a section (block) of code

that has exactly one entry point and one exit point. Therefore, once the first

statement in the basic block is executed, all other statements in that block will by

definition be executed. Basic block coverage is an absolute measurement of the

amount of code covered in comparison to the basic blocks discovered by IDA Pro.

%BBCov =
CoveredBasicBlocks

TotalDisassembledBasicBlocks
(3.1)

• Touched Function Coverage (%TFCov): The percentage of all functions within the

binary which are at least partially symbolically executed by S2E (at least one basic

block). Touched function coverage reveals how many of the functions within the

code were actually invoked during symbolic execution, and measures code coverage

in as many areas of the binary as possible. This is also calculated using IDA Pro as a

baseline.

%T FCov =
TouchedFunctions

TotalFunctions
(3.2)

• Fully Explored Function Coverage (%FEFCov): The percentage of all functions

within the binary in which all basic blocks are symbolically executed by S2E. Fully

Explored Function Coverage measures how many functions within the code

achieved 100% execution, that is, it measures complete coverage of the maximal

amount of functions throughout the binary. This uses data collected from IDA Pro

to determine if each function has been completely executed.
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%FEFCov =
FullyExploredFunctions

TotalFunctions
(3.3)

• Number of Paths/States Discovered: The number of paths discovered while

symbolically executing each of the binaries. A higher number of paths suggest path

explosion was not a significant issue as paths are short enough to terminate before

memory is depleted.

3.5.2 Model Performance. Since S2E can still run compressed binaries (albeit

without all loaded memory addresses), we can obtain run statistics from KLEE to

compare against their native counterparts and estimate performance when coverage

support for obfuscated binaries is added in the future.

• Number of Paths/States Discovered: The total number of states found in the

compressed binary. It is expected to be lower since the uncompressed binary will

have a greater percentage of the actual code loaded into memory where S2E expects

it to. Whereas the uncompressed binary, on the other hand, will most likely have

only a small proportion of the same code, if any at all.

With this metric, intelligent predictions can be made about the coverage potential of

the symbolic execution engine once it can measure coverage without the input from

IDA Pro. Since the coverage tool currently requires IDA Pro to compare

basic/function blocks with the S2E output, the other metrics used for the

uncompressed binaries cannot be applied.

3.6 System Parameters

The following parameters affect the system performance.

• Memory Quantity: The amount and type of Random Access Memory (RAM)

available to the system. More RAM will allow S2E to hold more states during
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symbolic execution and therefore increase the total symbolic execution time of the

system (assuming the path explosion problem persists and the number of possible

states exceeds the amount of memory that can be dedicated to the operation).

Increased memory will also allow more block coverage, since more paths can be

explored.

• Binary Size: The compiled size of the program to be tested, measured in kilobytes

(kB). Larger programs will likely have more execution branches, leading to a higher

number of states and longer execution time. It is expected that the number of blocks

found will decrease as the size of the program increases (keeping all other

parameters constant) since only so many paths can be found with limited resources,

and this relatively similar number of paths will make up a smaller proportion of a

larger program.

• Symbolic Argument Size: The maximum size in bytes of each symbolic argument

that can be fed through the command line to each binary in the workload. Larger

sizes are expected to open more potential paths in the binary for symbolic execution

than a smaller number, leading to more basic block coverage. However, it is also

expected that an increase in argument size will mean more memory usage, and since

S2E is already memory-constrained, this may decrease the total number of actual

paths found.

• Symbolic Argument Quantity: The range of possible symbolic arguments that can

be fed through the command line to each binary in the workload. This is represented

as a range of numbers, from 0 to x, where x is the maximum number of arguments.

Similar to symbolic argument size, the number of these arguments may expose more

paths to explore, but may not actually be explored due to increased memory load of

each state needing to store more arguments.
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• Symbolic Domain: The executable memory address space available for symbolic

execution in S2E. This address space may be 1) for executing only code belonging

to the process itself (–select-process-code), 2) to include other code in user address

space such as libraries (–select-process-user), 3) to include other code in all address

space, including kernel space (–select-process). The user may limit symbolic

execution only to the code contained within the executable itself and not worry

about library calls or higher-order OS code to be included within the symbolic

realm. It is expected that using only the process address space will limit the

potential number of paths that can be found. This, however, is a desirable trait as

then expensive symbolic execution cycles are not spent exploring and creating

OS-level states.

• Binary Compression Level: The level at which the UPX packing tool has

compressed each of the binaries for addition to the workload. Compression levels

range from 1 to 9 and “best,” which offers the most compressed executable possible.

Higher compression leads to more memory consumption during runtime

decompression and execution. Thus, higher compression is expected to result in

decreased block coverage and shorter symbolic execution time.

3.7 Factors

Two parameters are selected as factors to test the performance of S2E. Their

corresponding levels are described below and summarized in Table 3.1

Binary Size: The effect of an executable’s size plays on block coverage cannot be

ignored. Since the sizes of the original 27 binaries are in some cases have a two orders of

magnitude difference, they were separated into four classes: <25 kB, 25-50 kB, 51-100

kB, and >100 kB. This classification introduces some context to potential differences in

block coverage and execution time.
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Compression Level: To maintain a representative sampling of the disassembly

performance of S2E for multiple compression levels each executable was run at 1) a

minimal level of compression which in this case is uncompressed (none), 2) medium level

of compression (upx -5) and 3) maximum level of compression (upx --best).

Table 3.1: Experimental Factors and their Respective Levels

Levels Binary Size Compression Level

1 <25 kB none

2 25 - 50 kB -5

3 51 - 100 kB –best

4 >100 kB

Although there are four levels for the Binary Size factor, there are not an equal

number of binaries available for each of these classification levels. Therefore, a full

factorial experiment is run using the total number of binaries at each of the three

compression levels. Sufficient statistical basis for analysis is expected to be achieved with

one replication. Thus, the research will have 27 * 3 = 81 total experiments.

3.8 Evaluation Technique

A hybrid approach to evaluate the system is used, utilizing both measurement and

modeling techniques. Measurements are taken from the S2E system itself on

uncompressed binaries. For these samples, measurement is the evaluation technique

because the system is configured to accept binaries in this form and already generates

block coverage based on the output from IDA Pro. Additionally, the time and resources

required to measure this portion of the workload is no greater than those needed to model

the experiments. Therefore, measurement of the current system is preferred.
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To evaluate the system’s potential future effectiveness in block coverage of

obfuscated binaries, a modeling approach is used. Preliminary testing on obfuscated

binaries reveals that S2E cannot provide block coverage statistics for two reasons. First, it

depends on the successful output from IDA Pro to generate the .bblist file, matching PC

addresses to basic blocks, and these basic blocks to their functions. Without successful

output from IDA Pro, there is no standard on which to base the discovered basic blocks

and other metrics such as functions covered. Conceivably, this same problem could

manifest itself even for non-packed and non-malicious files if the disassembly from IDA

Pro is incorrect.

The second reason obfuscated binaries are unable to be measured is that they cannot

be properly run on S2E. When S2E detects a binary running, it is configured to monitor

the memory addresses of that binary so S2E can report which addresses have been

executed. Currently the init env plugin can only track modules with contiguous,

unchanging memory space. The run-time decompressing an obfuscated binary undergoes

during its execution uses a different amount of memory than S2E accounts for and also

loads program data into several locations in contrast to a normal executable’s contiguous,

single address space. Modifications to the init env plugin to recognize new “modules”

when the program allocates new memory would solve this problem.

However, the obfuscated samples are still symbolically executing the code

immediately within its assumed memory addresses, so the measurements that KLEE

makes during symbolic execution still occur. Using these measured values will contribute

to the obfuscated samples’ model-based evaluation.

Each of the binaries is tested by running them within S2E. For the native,

non-obfuscated binaries, the performance of S2E is evaluated using equal weighting from

the measured performance metrics from Section 3.5.1. For the obfuscated binaries, the
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performance (or, more accurately, the potential future performance) of S2E is evaluated

using model performance metrics from Section 3.5.2.

3.9 Testing Phases

Several phases of testing are used to determine the effect of various factors on

experimental results, and accommodate the increasingly deeper understanding of how S2E

accomplishes symbolic execution. Different factors were chosen in each phase of testing

to separate and understand the effects that parameters had on the system.

3.9.1 Phase I. The first phase bases its factors and levels on analysis of the S2E

options available. Only one replication is used for each executable since the results are

being compared to a single run of the binary through IDA Pro. For this phase, the

parameters of symbolic argument size and symbolic argument quantity are chosen. The

number and size of the arguments submitted to the test binary is specified as a range (e.g.,

from zero to five paths of up to four bytes each is specified as --sym-args 0 5 4). Phase

I determines whether these parameters should be included in the final experiment design.

Several levels of argument size and quantity are tested on the echo binary. Since S2E

developers constantly referenced echo as an example executable in their tutorials, it is

assumed that its relative simplicity allows it to perform consistently for this initial testing.

As Table 3.2 shows, more paths were discovered as the number of arguments and their

sizes are increased. It is assumed that a greater number of paths leads to greater block

coverage by S2E.

Several levels of argument size and quantity are submitted to S2E, with the largest of

them producing the highest number of states found and the most paths through the

program. Therefore, a large quantity of potentially large-sized arguments (e.g., up to 10

arguments, each of size 12 bytes, or --sym-args 0 10 12) would include all of the

possible subsets of smaller argument quantities and smaller argument sizes.
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Table 3.2: Effect of Arguments Given on Number of Paths Found

Argument Quantity Range

0 to 2 0 to 10

Argument 4 8158 11914

Size (bytes) 12 10128 12498

3.9.2 Phase II. The second phase of testing analyzes the basic block and function

block coverage with the offline analysis tool included with S2E, coverage. It also used

the run.stats file to determine the cause of runs seeming to end prematurely. The

results are surprising: each time a run had “completed,” the operating system had actually

run out of memory, and killed S2E. The path explosion problem manifested itself even on

echo and it seemed that the initial testbed which used 16 GB of RAM was actually part of

the problem. With that large amount of memory, S2E could keep track of thousands of

new program states and continue to search for new paths for far longer than it found new

basic blocks. In fact, the last time S2E found a new basic block in echo was 311 seconds

into the experiment; the next 3 hours and 25 minutes were spent unsuccessfully searching

the execution paths for a new basic block (see Table 3.3).

Table 3.3: Effect of RAM Size on basic block coverage on the echo binary. Echo
--sym-args 0 10 12 was used in this phase.

Size of RAM (in GB) Basic Block Coverage (%) Exact Blocks Covered

3 5.038 53 of 1052

16 5.228 55 of 1052

Running the same binary with only 3 GB of RAM results in the same block coverage,

since the last successfully found basic block occurred before the number of states grew too

large for the VM to hold. Therefore, using echo as a pilot reduces the amount of memory

previously thought necessary, and allows multiple experiments to run simultaneously in
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separate VMs. Since echo is a very simplistic program and yet still suffers from path

explosion, it is assumed that the other binaries in the workload will also see decreased test

times at no expense to the block coverage achieved using the same decreased RAM levels.

In effect, reducing the available memory shortens the wasted time due to path explosion.

The creation of and adherence to these phases maximizes the potential for

discovering new relevant information, minimizes data which is redundant and/or

unnecessary, and leads to efficient experimentation procedures.

3.10 Experimental Design

To evaluate the interaction between all factors, a full factorial design is used. There

are two factors: executable size and obfuscation level. Executable size is obtained using

the objdump Linux command line utility and is measured in kilobytes (kB). Obfuscation

level is determined by the UPX packing program [OMR12] UPX version 3.08 (released

12 December 2011). UPX has 10 different available compression levels, from 1 to 9 and

“best,” which can take significantly longer but has the best compression ratio [OMR12].

Levels “5” and “best” were used as representatives of moderate and “extreme”

compression, respectively.

For this research, a suitable Linux disk image is loaded for QEMU (and the S2E back

end) to run. Debian GNU/Linux 5.0 “Lenny” is used, as it had been released four years

prior (on 6 February 2008). It is therefore considered a mature release of Linux. Since the

init env plugin requires executables be driven from the command line, a non-graphical

release of Linux is preferred to reduce overhead from possible graphical elements.

Therefore, this disk image includes support for command line operation only. The 32-bit

version of Lenny is used, simplifying the pool of potential executables that undergo

analysis and excluding their 64-bit counterparts. Additionally, the OS image is compiled

for x86 hardware, and must be of specific image format (qcow2, or QEMU Copy On

Write version 2). This disk image format delays allocation of storage until necessary and
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also supports snapshots of QEMU [Bel11], which is important for the experiment setup.

Since QEMU is a full system emulator, it takes a significant amount of time (on the order

of several minutes) to start, especially considering it is operating within the S2E-provided

Ubuntu VM running on VMWare Workstation. These snapshots access the same system

state in seconds from both the original, unmodified QEMU emulator and the S2E-QEMU

emulator.

On the Debian GNU/Linux 5.0 distribution, there are 83 executable files located in

the standard Linux /bin/ directory, which together comprise the Coreutils suite of

command-line tools available on every Linux distribution. However, there are many which

are not used. First, many of these executables are duplicates (e.g. nc and netcat). In

these cases, the binary with the more descriptive name is used. Second, some of the

binaries offer only a subset of another’s functionality (e.g., rnano is a restricted version of

nano, and fgrep is simply the grep command with the -f flag enabled). When this

occurs, the more functional binary is used. Third, many of the executable files are not

actually binary files, but instead are shell scripts (e.g., uncompress, which, zdiff).

Finally, S2E cannot symbolically execute everything. Each executable was initially

analyzed in a pilot test with S2E to determine whether the tool could work. Of the 83

original files in /bin/, 30 meet the previous requirements and are able to successfully

execute within S2E; of those, 27 can be further compressed successfully by UPX for a

comparison of handling obfuscation levels. The list of binary executables used and a

description of each from their respective man (manual) page can be found in Appendix A.

The testbed setup is provided in Figure 3.2. This figure provides context for the

information contained within the rest of this section.

Each run is completed within a customized version of the S2E-provided VMWare

virtual machine which runs the Linux-based operating system Ubuntu 10.10 (available at

https://s2e.epfl.ch/attachments/download/63/s2e-demo-vmware.tar.bz2). S2E itself is
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Figure 3.2: The testbed setup for this research.

hosted on a git repository (at https://dslabgit.epfl.ch/git/s2e/s2e.git); S2E commit

c3822c82 from 6 Feb 2012 is used in all experiments. To increase execution speed (and

using the knowledge gained from dedicating alternatively larger and smaller amounts of

RAM to the VM), each of 6 VMs is run on 3 GB RAM, each with one dedicated

processing core from the host machine. The host machine runs on Windows 7 64-bit with

Service Pack 1, and has 24 GB RAM and two quad-core Intel Xeon X5677 CPUs running

at 3.47 GHz. Running six S2E VMs simultaneously leaves 2 dedicated cores and 6 GB

RAM for the host. This is more than adequate considering the only extraneous host

process running during testing is VMWare Workstation (version 8.0.1 build-528992) itself.

Each of these experiments is compared to the output achieved in IDA Pro with the

same executable. IDA Pro Advanced version 5.7.0.935 (32-bit) was used, with support for

detecting and analyzing the Linux ELF executable binary file format [HR11]. In addition,

IDAPython version 1.4.2 is installed [Sou12] to support Python 2.5.4 scripts [Com08].

Once disassembled, a custom Python script bundled with the S2E source code named

extractBasicBlocks.py (see Appendix B.2) extracts the addresses and related
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functions of the basic blocks found in the executable. This was stored as a .bblist file,

which is transferred back to the Ubuntu VMs for analysis with the included coverage

tool.

The coverage tool bundled with S2E compares the trace of symbolic execution

(named ExecutionTrace.dat) with the .bblist file generated from IDA Pro, and

produces .repcov, .timecov, and .bbcov files. These files are used with the

run.stats file from the initial symbolic execution generated by KLEE to determine the

relative coverage achieved by S2E in comparison to IDA Pro and the time required for

each stage of symbolic execution.

3.11 Methodology Summary

The decompilation of x86-based binaries is an important technique for

comprehension, vulnerability analysis, and bug correction of closed-source code. A

crucial step in decompilation is the disassembly of machine code into an intermediate

representation which is subjected to constraint-solving. The expected result from this

research is that disassembly focusing on symbolic execution will outperform current

methods of recursive descent disassembly as obfuscation levels increase.

This experiment symbolically executes a representative sample of relatively small

binaries as well as two obfuscated versions of each in S2E. They are also be disassembled

in IDA Pro and the resulting block coverage compared.
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4 Experimental Results and Analysis

The performance metrics described in Section 3.5 characterize the performance of

S2E for binaries across several compression levels. Section 4.1 presents the performance

of native, uncompressed binaries. The results for obfuscated binaries are in Section 4.2.

4.1 Non-obfuscated Results

Measurement of block and function coverage for non-obfuscated (also referred to as

native or uncompressed) binaries extracted from the Debian guest system serves as

baseline performance. From this baseline, some idea is possible of how well the

obfuscated versions of these binaries could expect to be covered if IDA Pro produced

accurate .bblist files. The metric maximum states is the reference for symbolic

execution through the binary for later comparison to obfuscated samples.

4.1.1 Metric: Maximum States Found. Each of the binaries is symbolically

executed in S2E as described in Section 3.10. Before running the coverage tool, the

number of paths are determined with tbtrace, the Translation Block Tracer tool. As

expected, the quantity of paths found with tbtrace were equal to the number of states

found by KLEE. This is expected since each path should result in the creation of another

execution state by S2E. The state quantities are in run.stats, a file generated by KLEE

and placed in the s2e-last folder with all other data gathered by S2E from that run.

Figure 4.1 shows the total number of states found in each binary during symbolic

execution.

Two very distinct patterns emerge from these non-obfuscated binaries and therefore

they will be discussed separately. Section 4.1.1.1 interprets the results of those binaries

which produced very few states (18 or less), while Section 4.1.1.3 does the same for those

binaries with hundreds more states.
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Figure 4.1: Histogram of number of states found for all non-obfuscated binaries with actual
data points along x-axis.

4.1.1.1 Observation I: Few Paths Found. For 11 of the 27 native samples,

fewer than 20 total paths were found through the execution tree. As shown in Figure 4.1,

they are concentrated on the far left side, between the ranges of 11 and 18 total states in

what appear to be a single value in the figure. Intuition dictates that complex binaries such

as busybox with a large amount of functionality (see Appendix A.2) cannot contain only
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11 possible execution paths. Further analysis of execution logs also reveals a warning in

KLEE common to all of these abbreviated state trees, shown in Figure 4.2.

Figure 4.2: The common warning present in the output generated during binaries with few
paths found.

This warning means forking (or symbolic execution) has been disabled for the

remainder of the execution tree. Along with a significantly lower number of paths, these

binaries were not constrained by memory like those with hundreds of paths found.

Instead, the relatively low number of paths terminated quickly after discovery.

Additionally, an interesting phenomenon occurred in this subset of the workload. There

were more repeated instances of the same maximum states (11 states were observed six

times) than any other amount.

4.1.1.2 Interpretation I: Few Paths Found. The results from this subset are

unexpected but can be explained. Since many binaries use outside libraries to parse

arguments from the command line, these libraries are not loaded into the same address

space as the rest of the binary’s code. This feature of S2E allows symbolic execution to

proceed selectively enough for the analysis of individual binaries. Thus, the same number

of symbolic arguments (from 0 to 10) is passed to the binary but since it must use external

library code to parse the arguments, the rest of that branch is concretized (i.e., forking is

disabled), and upon return to the binary’s code section is killed.
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4.1.1.3 Observation II: Many Paths Found. The remaining 16 uncompressed

samples explored at least 443 execution paths with some finding over 2000. For each of

these binaries, the run.stats file indicated that the VM had allotted all its available

memory to S2E before killing the process entirely to recover memory. During the

symbolic execution of bash, for example, the last reported update to the run.stats file

showed 3446153216 bytes of memory usage, or approximately 3.4 GB. This corresponds

with the 3 GB allocated to the VM, along with 480 MB used as swap space.

4.1.1.4 Interpretation II: Many Paths Found. The relative success of

symbolic execution finding hundreds or thousands more paths than the first subset of the

non-obfuscated binaries shows the true potential of S2E as a binary analysis platform and

the theoretical superiority of symbolic execution as an automated binary analysis method.

However, path explosion limits the true number of paths S2E can explore and other

limitations such as usable memory and time are apparent.

4.1.2 Metric: Basic Block Coverage. Basic block coverage is an important metric

to establish an absolute value of what percentage of all executable code is actually

submitted to KLEE for symbolic.

4.1.2.1 Observation. The basic block coverage achieved by S2E varied

greatly for this workload. However, no relationship could be established to predict the

coverage of a binary with any other previously-gained information such as binary size,

number of states found or ratio of size to states found. Several scatterplots (cf.

Appendix C.1) show no clear relationship with respect to these variables. Thus, this

information is presented in a boxplot shown in Figure 4.3.

Overall basic block coverage was low in comparison to IDA Pro. The maximum

basic block coverage is in mktemp at 60%. This is much higher than the interquartile

range between 8% and 29% but not so much that is considered an outlier. The lowest
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Figure 4.3: Basic block coverage of native (uncompressed) binaries.

basic block coverage was on busybox (cf. Appendix A.2), a suite of

reduced-functionality UNIX commands in which S2E could only find 11 paths despite its

relatively large size (368 kB, the second-largest in the workload).

4.1.2.2 Interpretation. The complexity of these binaries was by far the most

important characteristic with respect to S2E’s ability to achieve high basic block coverage.
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For example, mktemp and busybox had quite disparate coverage percentages. Viewing

these binaries in IDA Pro through its function call graph viewer was a revealing exercise

for why these coverages are so different. The mktemp graph is shown in Figure 4.4, while

Figure 4.5 presents the same for busybox.

Figure 4.4: Function call graph produced by IDA Pro for mktemp.

Figure 4.5: Function call graph produced by IDA Pro for busybox.

The lighter pink boxes are named functions while black boxes represent internal,

unnamed functions. Calls from one function to another are represented by black arrows.

Clearly, mktemp has a much smaller and simpler program structure which allows greater

coverage of its basic blocks. The number of branches present in busybox are so numerous
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that they appear to be solid and its larger size requires the graph to be sacled substantially

compared to mktemp.

In addition, busybox only resulted in the discovery of 11 total paths. This suggests

that its method for parsing input is located in an external library, unable to be reached by

S2E for symbolic execution as it is outside of its allocated memory space.

4.1.3 Metric: Touched Function Coverage. The touched function coverage

measures how effectively S2E can provide at least shallow coverage of as many functions

as possible. This is important because the more functions covered, the greater potential

that command-line arguments have in exploring the program. Symbolic execution is

inherently limited by the path explosion problem, but success in finding at least the

beginning of each function (and later failing to finish because of real-world memory or

time constraints of representing the exponentially increasing number of execution states)

portends the potential of using S2E or other CLI-based methods in driving path

exploration.

4.1.3.1 Observation. As with basic block coverage, it was difficult to

establish a relationship between touched function coverage and other previously-known

information (cf. Appendix C.2). Figure 4.6 presents the touched function coverage of all

native binaries.

Touched function coverage was extremely varied ranging from 3% with busybox to

54% with sed. The median value was 31%, with an interquartile range of 22% to 40%.

4.1.3.2 Interpretation. The coverage for sed is comparatively high

suggesting that it relies mostly on user-driven input from the command line to achieve

most of the functionality present in its execution tree. Its description as a stream-based

command line text editor supports this conclusion (cf. Appendix A.23 for its detailed man

page description). Again, busybox has low coverage, due to S2E’s inability to fork on any
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Figure 4.6: Touched function coverage of native (uncompressed) binaries.

code that is outside of the memory space allotted to it. This prevented busybox from

using the symbolic input provided and therefore resulted in disappointing performance.

4.1.4 Metric: Fully Explored Function Coverage. Each function in a program is

comprised of a number of basic blocks. The fully explored function coverage measures

the percentage of functions for which S2E symbolically executes all basic blocks. That is,
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all code which can be considered part of that function is executed. This is a measurement

of the shallowness of a program – that is, it may have many paths, but some of them are so

simple that symbolic execution can reach their termination point. The termination point

must be reached before S2E is killed by the operating system to regain memory.

4.1.4.1 Observation. It appears estimating future symbolic execution

performance of an executable is very difficult without some preliminary analysis with IDA

Pro (cf. Appendix C.3). Size, states found, and even ratios of the size and states fail to

provide any apparent correlation with respect to coverage.

The maximum fully explored function coverage was during the run of date at 38%.

The minimum coverage was again in busybox at 1%. The median coverage was 22%,

with an interquartile range of 14.5% to 27%.

4.1.4.2 Interpretation. The relatively high fully explored function coverage

for date can be attributed to the simplicity of its paths and the ability for S2E to keep a

higher number of states active while searching through them until termination. A prime

example of this simplicity is the amount of time date was able to run without using all of

the system’s memory. Even though it is a 54 kB binary (well above the median 33 kB), it

ran for the second-longest time (61429 sec, approximately 17 hours) because many of its

paths were simple enough to find an end, freeing up memory for additional states and

executions paths. For the third time, busybox achieved the lowest coverage due to S2E

preventing it from parsing and therefore using the symbolic input.

4.2 Obfuscated Results

As described in Section 3.5.2, different metrics for obfuscated binaries needed to be

appropriately chosen given S2E coverage tool’s reliance on accurate data from IDA Pro,

and IDA’s failure to provide meaningful results on obfuscated samples. Therefore, the
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Figure 4.7: Fully explored function coverage of native (uncompressed) binaries.

metric chosen is the number of S2E states/execution paths found during symbolic

execution. This metric measures the completeness and accuracy of symbolic execution on

obfuscated binaries compared to their native counterparts.

The maximum number of states found, as explained in Section 4.1, is stored in the

run.stats file. KLEE updates this file whenever a new state is found or an old state has

reached the its path termination point and is killed. Since this metric is one of the few that
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can be measured in obfuscated samples, it is a valuable tool to compare with the original

binary. If the number of states in the obfuscated binary is equal to that of those in its

native counterpart, then S2E has achieved its maximum potential obfuscated performance.

Since symbolic execution keeps track of more states in an obfuscated binary due to

the unpacker code, the number of states found in the obfuscated binaries was anticipated

to be lower than the baseline achieved by the non-obfuscated binaries. Unexpectedly, the

opposite effect was observed. Section 4.2.1 presents the results from compressing each

binary at a mid-range compression level and Section 4.2.2 presents results from binaries at

the highest level of compression.

4.2.1 Mid-Level Compression Observations. Figure 4.8 are box plots of the

number of states in the native binaries compared to those found at the medium level of

compression, UPX -5. It appears that the number of states found is higher for the

obfuscated samples.

A two-sample t-test determines whether there is a statistically significant difference

between the midrange compression level and the uncompressed native baseline. More

specifically, Welch’s two-sample t-test is used since the samples clearly have unequal

variances. The one-sided p-value of 1.812 x 10-4 is convincing evidence that programs

compressed to a mid-range level result in a higher number of states during symbolic

execution than those that are uncompressed. The difference in mean states is estimated to

be an average of 727.85 higher for mid-level compressed binaries, with a 95% confidence

interval of (368.49, 1087.21).

4.2.2 Highest-level Compression Observation. Figure 4.9 are box plots of the

number of states found from the native binaries compared to those found at the highest

level of compression, UPX --best. Again, the obfuscated samples result in more states

during symbolic execution than their native versions.
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Figure 4.8: States found through symbolic execution from binaries at zero and mid-range
compression.

A two-sample t-test is used to determine whether there is a statistically signifcant

difference between the number of states found by binaries at the highest compression level

and those found by the uncompressed baseline binaries. Welch’s two-sample t-test is used

due to unequal variances. With a one-sided p-value of 1.790 x 10-4 there is convincing

evidence that binaries packed at UPX’s highest level of compression result in a higher

number of states during symbolic execution than those that are uncompressed. The
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Figure 4.9: States found through symbolic execution from binaries at zero and highest
compression.

difference in mean number of states is estimated to be an average of 757.37 higher for the

compressed binaries, with a 95% confidence interval of (382.26, 1132.48).

4.2.2.1 Interpretation. The higher number of execution paths found from

binaries at both levels of compression compared to their uncompressed counterparts is

surprising. There are two explanations for this: 1) the same code is not being symbolically
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executed in both cases, or 2) the obfuscated code actually lends itself to symbolic

execution.

Documentation from the S2E website early in this research suggested its methods for

selecting a binary was appropriate for any CLI-based binary. The init env plugin allows

arbitrary selection of an executable by first loading the init env.so library with the

Linux LD PRELOAD command. This library overrides the initial function call

libc start main made by every executable and places special S2E-specific methods

to enable forking and disable forking around the program code as it is loaded into

memory. These methods are encoded as unused processor opcodes and interpreted by the

S2E-modified version of QEMU which sends the forking-enabled code through KLEE

instead of executing it concretely through QEMU on x86 hardware. This entire

mechanism is the basis for S2E’s “selective” symbolic execution and it works well for

typical binaries that occupy a single, contiguous executable memory space [CW12].

This approach fails for UPX-packed binaries, however, because the header of the

compressed binary points immediately to the unpacker code skipping the memory regions

which will eventually contain the program’s real functionality (cf. Figure 2.3). An

interesting case are the uncompressed binaries which resulted in a very low number of

paths/states when submitted to S2E for symbolic execution (cf. Table 4.1). If the

obfuscated code was actually easier to execute, they should return the same number of

state and then terminate. Instead, they returned hundreds or sometimes thousands more

paths than the original binary with no compression.

Another interesting phenomenon is the variances for each of the obfuscated portions

of the workload are much lower than that of the uncompressed binaries. This difference in

variance supports the contention that the same code is not being executed in both cases.

In fact, the actual code submitted to KLEE is the unpacker code, which contains

pointers to code in the virtual memory space where each function was assigned to unpack.
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Table 4.1: Number of states found at each compression level for all binaries.

Binary Name None Mid-level High

bash 443 2018 1208

busybox 11 1520 1264

chmod 1365 1701 2673

date 1122 1290 1267

dnsdomainname 11 2019 2241

echo 1862 2496 2375

ed 763 969 1111

false 15 14 10

ip 2009 1911 2449

mktemp 10 1864 2055

more 2408 1370 1979

nano 528 1536 1635

netstat 11 1429 1257

pidof 18 1365 1301

ping 13 917 957

ping6 11 1237 990

ps 1536 1935 1672

pwd 12 1106 1211

readlink 1530 1167 1380

rm 942 1588 1127

rmdir 1066 1149 1242

run-parts 11 1777 2483

sed 581 1396 1326

sleep 1441 1285 1299

stty 1300 2008 1844

sync 11 1042 1221

tar 1806 2419 1708
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KLEE symbolically executes the unpacker code since this code falls in the first memory

space allocated by the executable, but will not symbolically execute any other region in

memory including the original binary’s code and data sections.

4.3 Recommendations for Improvement

The inability for S2E to detect, choose, and load multiple memory spaces at runtime

is the root cause of S2E’s tendency to find significantly more paths through the obfuscated

binaries than for the original ones. In this section, several improvements are suggested

with increasing implementation difficulty. They will not change the fact that S2E is still

limited by computing resources and time, but will allow a more thorough symbolic

execution of obfuscated binaries themselves (and not just their unpacker code).

4.3.1 Primitive Improvement. The simplest approach to guarantee symbolic

execution on the entire obfuscated binary is to remove all memory restrictions for

s2e enable forking and s2e disable forking. This will effectively introduce the

entire memory space (from 0 to (uint64 t - 1)) to symbolic execution, allowing the

unpacked code from the original binary to enter symbolic execution. However, this will

also allow any other library code or kernel-level code required during execution to be run

symbolically. Unfortunately, this will also cause the unpacker code to run symbolically as

well, exaggerating the path explosion problem. At that point, post-execution becomes the

most important problem, as the analyst will need to efficiently differentiate between

program code and non-program code.

4.3.2 More Efficient Improvement. The method S2E uses to search the memory

address space for the executable to symbolically execute uses the s2e get module info

function. This function parses a common Linux file at /proc/self/maps to find which

parts of memory belong to a process. Displaying this file during runtime reveals many

spaces are allocated by the unpacker code, but are left unnamed. An addition could be
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made to s2e get module info to also parse memory address spaces that have no name.

If an execution path enters any of these regions, symbolic execution can be performed. If

execution does not enter one or more of these regions, there is no loss in performance. As

a performance bonus, if a binary is packed (trivial to determine if more than one memory

region is marked executable), execution can be explicitly denied on the memory space

originally allocated to the packed executable as that space should contain only unpacker

code which should be concretely executed.

4.3.3 Advanced Improvement. A more advanced method for improving S2E is to

override the mprotect method. This is a common Linux function that controls the

privileges of memory blocks. When new memory is allocated for a process or when the

read/write/execute privileges are changed, mprotect is called to do this. Therefore, it

could be overridden to add any new executable memory regions to the current program

being symbolically executed whenever these privileges are changed. The current

init env.so library already overrides libc start main, and so the addition of

another override should work as well.

4.4 Summary

The performance of S2E on native, uncompressed binaries demonstrates the current

practical shortcomings of symbolic execution compared to static disassembly with respect

to code coverage. The use of execution states (i.e., paths explored) provides a valuable

baseline metric with which to compare binary samples that IDA Pro cannot correctly

disassemble, and on which S2E cannot provide coverage statistics.

S2E’s behavior over binaries at medium and high obfuscation levels identified

deficiencies in its implementation to dynamically select appropriate memory bounds for

symbolic execution. In response to these findings, three improvements are presented to
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include all relevant code sections in obfuscated samples, thereby increasing code coverage

and the capability that S2E has in reasoning about packed executables.
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5 Conclusions

This chapter presents the significance of this research in Section 5.1. Ideas for future

work are described in Section 5.2, and final thoughts are given in Section 5.3.

5.1 Significance of Research

This research used the Selective Symbolic Execution (S2E) engine to measure the

effectiveness of symbolic execution as a binary analysis platform. It established coverage

baselines with respect to basic blocks, touched functions, and fully explored functions on

a sample set of real-world Linux binaries setting expectations for future utility of

symbolic execution.

This research also tested the applicability of S2E for obfuscated binaries at several

levels and determined S2E does not currently support symbolic execution on programs

split into multiple executable memory regions at runtime (i.e., most packed code). Instead,

S2E simply uses the first memory region available to the current process, which in early

testing of non-obfuscated binaries resulted in the correct region.

Given these results, three recommendations for improvement to S2E are made. All

three recommendations could solve the obfuscation problem, albeit at different levels of

eloquence and efficiency. The first method submits all possible memory space for

symbolic execution, but will likely not be selective enough to offer much useful data. The

second method is much more eloquent, but will need to be fine-tuned for the behavior of

different packing tools depending on how the new memory regions allocated are named.

The final method will allow universal recognition of runtime unpacker code that needs to

change the read/write/execute privileges of memory regions, and should be most effective.
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5.2 Future Work

There is clearly much work to be done before symbolic execution can be used with

the same frequency as other binary analysis methods. Nevertheless, several potential

problems stand out and should be fixed first.

5.2.1 Code Priority. The theory behind S2E was to prioritize certain sections of

code before others with the observation that only portions of the code are considered

“interesting.” This is important, because many portions of a piece of malware may be in

reused libraries that have already been analyzed; time and effort spent to analyze these

again would be a waste. Instead of attempting to symbolically execute entire binaries as in

this research, it would be beneficial to design a method to categorize new sections of code

and prioritize/triage them appropriately with S2E.

5.2.2 Baselines for Obfuscated Code. Even after accomplishing the recommended

improvements with respect to obfuscated binaries, quantifying code coverage is still an

impossible task with S2E’s current coverage methods. The current implementation of

S2E’s coverage tool depends on viable .bblist output from IDA Pro and the

S2E-provided extractBasicBlocks.py script. However, IDA cannot effectively

disassemble obfuscated binaries since they change at runtime. Providing a method to

verify code coverage on obfuscated (and uncompressed) binaries without IDA Pro is

desperately needed to make an informed decision on the percentage of an obfuscated

binary that can actually be reasoned about.

5.2.3 Handling and Testing of Obfuscated Code. An interesting future research

project could implement and test all three recommendations given at the end of Chapter 4.

Using these recommendations as metrics for obfuscated binary analysis, one could

determine which offers the best speed, accuracy, and completeness of symbolic execution

compared to a given baseline. The baseline could be determined through symbolic
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execution of uncompressed binaries, as in this research, or through other methods that

only used obfuscated binaries as a baseline.

5.3 Conclusion

Symbolic execution, at least in the implementation offered by S2E, is not yet ready

for the same rigors of binary analysis that the combination of program debuggers and

static disassemblers currently handle. The practical, real-world limitations of symbolic

execution manifest themselves on small executables, all of them less than one megabyte in

size. As a result, symbolic execution should only be used for unknown executables that

resist traditional debugging/disassembly techniques. However, many of the shortcomings

experienced by S2E for symbolically executing obfuscated binaries occupying multiple

memory spaces can be overcome and would provide a single, automated, and unified

platform for all types of binary analysis. A higher theoretical potential for path discovery

than either of the traditional methods of reverse engineering and the ability for execution

paths to be automatically explored and made suitable for mathematical analysis, as well as

automatically creating and returning relevant test cases is a tantalizing vision of future

malware analysis.
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Appendix A: Binaries Used in Experiment, with Descriptions

A.1 bash

The standard GNU Bourne-Again SHell. A sh-compatible command language

interpreter that executes commands read form the standard input or from a file. Bash also

incorporates useful features from the Korn and C shells (ksh and csh). Bash is intended to

be a conformant implementation of the Shell and Utilities portion of the IEEE POSIX

specification (IEEE Standard 1003.1). Bash can be configured to be POSIX-conformant

by default.

A.2 busybox

The Swiss Army Knife of Embedded Linux. Busybox combines tiny versions of

many common UNIX utilities into a single small executable. It combines minimalist

replacements for most of the utilities you usually find in GNU coreutils, util-linux, etc.

The utilities in BusyBox generally have fewer options than their full-featured GNU

cousins; however, the options that are included provide the expected functionality and

behave very much like their GNU counterparts.

A.3 chmod

Changes the file mode bits of each given file according to mode, which can be either

a symbolic representation of changes to make, or an octal number representing the bit

pattern for the new mode bits.

A.4 date

Print or set the system date and time.
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A.5 dnsdomainname

Print the domain part of the FQDN (Fully Qualified Domain Name).

A.6 echo

Display a line of text.

A.7 ed

Ed is a line-oriented text editor. It is used to create, display, modify and otherwise

manipulate text files. red is a restricted ed: it can only edit files in the current directory

and cannot execute shell commands. If invoked with a file argument, then a copy of file is

read into the editor’s buffer. Changes are made to this copy and not directly to file itself.

Upon quitting ed, any changes not explicitly saved with a ’w’ command are lost.

A.8 false

Exit with a status code indicating failure.

A.9 ip

Show/manipulate routing, devices, policy routing and tunnels.

A.10 mktemp

Create a temporary file or directory, safely, and print its name.

A.11 more

More is a filter for paging through text one screenful at a time. This version is

especially primitive. Users should realize that less(1) provides more(1) emulation and

extensive enhancements.
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A.12 nano

Nano is a small, free and friendly editor which aims to replace Pico, the default editor

included in the non-free Pine package. Rather than just copying Pico’s look and feel, nano

also implements some missing (or disabled by default) features in Pico, such as ”search

and replace” and ”go to line and column number”.

A.13 netstat

Netstat prints information about the Linux networking subsystem.

A.14 pidof

Pidof finds the process id’s (pids) of the named programs. It prints those id’s on the

standard output.

A.15 ping

Ping uses the ICMP protocol’s mandatory ECHO REQUEST datagram to elicit an

ICMP ECHO RESPONSE from a host or gateway. ECHO REQUEST datagrams

(”pings”) have an IP and ICMP header, followed by a struct timeval and then an arbitrary

number of ”pad” bytes used to fill out the packet.

A.16 ping6

Ping6 uses the ICMP protocol’s mandatory ECHO REQUEST datagram to elicit an

ICMP ECHO RESPONSE from a host or gateway. ECHO REQUEST datagrams

(”pings”) have an IP and ICMP header, followed by a struct timeval and then an arbitrary

number of ”pad” bytes used to fill out the packet. Designed for Internet Protocol version 6.

A.17 ps

Ps displays information about a selection of the active processes.

70



A.18 pwd

Print the full filename of the current working directory.

A.19 readlink

Readlink() places the contents of the symbolic link path in the buffer buf, which has

size bufsiz.

A.20 rm

Remove files or directories.

A.21 rmdir

Rmdir() deletes a directory, which must be empty.

A.22 run-parts

Runs all scripts or programs in a directory.

A.23 sed

Sed is a stream editor. A stream editor is used to perform basic text transformations

on an input stream (a file or input from a pipeline). While in some ways similar to an

editor which permits scripted edits (such as ed), sed works by making only one pass over

the input(s), and is consequently more efficient. But it is sed’s ability to filter text in a

pipeline which particularly distinguishes it from other types of editors.

A.24 sleep

Sleep() makes the calling thread sleep until seconds seconds have elapsed or a signal

arrives which is not ignored.
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A.25 stty

Change and print terminal line settings

A.26 sync

Sync writes any data buffered in memory out to disk.

A.27 tar

GNU ’tar’ saves many files together into a single tape or disk archive, and can restore

individual files from the archive.
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Appendix B: Source Code of Scripts Written or Used

B.1 ListTB2.py

Description: Written in Python 2.x, compares the execution trace files found from the

included tbtrace tool from S2E, and builds a master file containing all the unique PC

addresses found.

’’’

Created on Jan 25, 2012

@author: Jon Miller

Given a number of paths from S2E’s output (0.txt, 1.txt, etc. up to 10k),

this will list all the different Translation Blocks that were executed.

Output is a temp.txt file which contains the different lines from all files,

and a final.txt file which contains only PC addresses of the TBs.

’’’

t = open(’temp.txt’,’w’)

t.close()

# compare files

def compareFile(inFile):

for inLine in inFile.readlines():

outputFile = open(’temp.txt’,’r+’)

#scan and compare current file with inLine
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if not (inLine in outputFile.readlines()):

outputFile.write(inLine)

outputFile.close()

# access files

def accessFiles():

for x in range(0,10000):

try:

inputFile = open(str(x) + ’.txt’, ’r’)

compareFile(inputFile)

inputFile.close()

print("Analyzed path " + str(x) + ’\r’),

except:

break

print # clears the next line so that the progress isn’t

# overwritten by the next terminal prompt

# remove error messages, forks, etc leaving only PC addresses of TBs

def cleanup():

f = open(’final.txt’,’w’)

for line in open(’temp.txt’,’r’):

#line starts with 0x, must be an address

if((line[0] == ’0’) and (line[1] == ’x’)):

f.write(line)

f.close()
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def main():

accessFiles()

cleanup()

if __name__ == ’__main__’:

main()
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B.2 extractBasicBlocks.py

Description: Written in Python 2.x, and using IDA Pro’s disassembly, outputs to file

the beginning PC address, ending PC address, and name for each function found.

import idaapi

import idautils

import idc

#Flowchart does not consider function calls as basic block boundaries.

#This function takes a range of addresses and splits additional basic blocks.

def cls_split_block(fp, startEA, endEA):

curName = GetFunctionName(startEA);

dem = idc.Demangle(curName, idc.GetLongPrm(INF_SHORT_DN));

if dem != None:

curName = dem;

first=startEA

h = idautils.Heads(startEA, endEA)

for i in h:

mnem = idc.GetMnem(i)

if mnem == "call" and i != endEA:

print >>fp, "%#010x %#010x %s" % (first,

idc.NextHead(i, endEA+1)-1,

curName)

first=idc.NextHead(i, endEA+1)
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if first < endEA:

print >>fp, "%#010x %#010x %s" % (first, endEA-1, curName)

# -----------------------------------------------------------------------

# Using the class

def cls_main(fp, func, p=True):

global f

f = idaapi.FlowChart(idaapi.get_func(func))

for block in f:

cls_split_block(fp, block.startEA, block.endEA)

#if p: print >>fp, "%#10x %#10x" % (block.startEA, block.endEA)

#for succ_block in block.succs():

# if p: print " %x - %x [%d]:" % (succ_block.startEA,

# succ_block.endEA, succ_block.id)

#for pred_block in block.preds():

# if p: print " %x - %x [%d]:" % (pred_block.startEA,

# pred_block.endEA, pred_block.id)

def extract_bbs():

filename = idc.AskFile(1, "*.*", "Save list of basic blocks")

exit = False

if not filename:

basename = idc.GetInputFile()

filename = basename + ".bblist"

idc.GenerateFile(idc.OFILE_ASM, basename + ".asm", 0, idc.BADADDR, 0)

idc.GenerateFile(idc.OFILE_LST, basename + ".lst", 0, idc.BADADDR, 0)
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exit = True

fp = open(filename,’w’)

funcs = idautils.Functions()

for f in funcs:

cls_main(fp, f)

if exit:

idc.Exit(0)

q = None

f = None

idc.Wait()

extract_bbs()
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B.3 packBinaries.py

Description: Written in Python 2.x, automates binary packing.

’’’

Created on Jan 28, 2012

@author: Jon Miller

Used to automate the process of packing all the binaries extracted from

the guest Linux machine to the ’host’ Linux machine.

Uses UPX version 3.08. Given the set of executables, it will compress each

of them and place them in the correct upx_# folder, where # is the

compression level used (1,2,3,4,5,6,7,8,9,best).

’’’

import subprocess

# set of all executables

bins = [’bash’,’busybox’,’cat’,’chgrp’,’chmod’,’chown’,’cp’,’cpio’,’date’,

’dd’,’df’,’dir’,’dmesg’,’dnsdomainname’,’echo’,’ed’,’egrep’,’false’,

’fgconsole’,’fgrep’,’grep’,’gzip’,’hostname’,’ip’,’kill’,’ln’,

’loadkeys’,’login’,’ls’,’lsmod’,’mkdir’,’mknod’,’mktemp’,’more’,

’mount’,’mountpoint’,’mt’,’mt-gnu’,’mv’,’nano’,’nc’,’nc.traditional’,

’netcat’,’netstat’,’pidof’,’ping’,’ping6’,’ps’,’pwd’,’rbash’,

’readlink’,’rm’,’rmdir’,’rnano’,’run-parts’,’sed’,’sh’,’sleep’,

’stty’,’su’,’sync’,’tailf’,’tar’,’tempfile’,’touch’,’true’,’umount’,

’uname’,’vdir’]
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upxdir = ’/home/s2e/Desktop/upx’

bindir = ’/home/s2e/Desktop/guestbins’

def upx():

for eachbin in bins:

#goes from compression rates 1 to 9

for x in range(1,10):

subprocess.call([upxdir+’/upx’, #use upx

’-’+str(x), #compression rate

’-o’, #output to...

bindir+’/upx_’+str(x)+’/’+eachbin+’_’+str(x), #output name

bindir+’/bin/’+eachbin]) #source binary)

#best compression

subprocess.call([upxdir+’/upx’, #use upx

’--best’, #compression rate

’-o’, #output to...

bindir+’/upx_best/’+eachbin+’_best’, #output name

bindir+’/bin/’+eachbin]) #source binary

def main():

upx()

if __name__ == ’__main__’:

main()
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B.4 runTBTrace.py

Description: Written in Python 2.x, automates creation of execution traces.

’’’

Created on Feb 10, 2012

@author: Jon Miller

Used to automate the process of creating /traces folder within each

result, and running tbtrace on that.

Can be executed from any location, but leave it on Desktop for later

reference.

’’’

import subprocess

# set of all executables used

bins = [’bash’,’busybox’,’chmod’,’date’,’dnsdomainname’,’echo’,’ed’,

’false’,’ip’,’mktemp’,’more’,’nano’,’netstat’,’pidof’,’ping’,

’ping6’,’ps’,’pwd’,’readlink’,’rm’,’rmdir’,’run-parts’,’sed’,

’sleep’,’stty’,’sync’,’tar’]

resultsdir = ’/home/s2e/Desktop/s2eResults/’

tbtrace = ’/home/s2e/s2e/build/tools/Release/bin/tbtrace’

outputdir = ’-outputdir=’

trace = ’-trace=’
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def traceit():

for eachbin in bins:

#for native binaries

#first mkdir /traces/

subprocess.call([’mkdir’,

resultsdir+eachbin+’/traces/’])

#then run tbtrace

subprocess.call([tbtrace,

outputdir+resultsdir+eachbin+’/traces/’,

trace+resultsdir+eachbin+’/ExecutionTracer.dat’])

#for UPX_5 binaries

#first mkdir /traces/

subprocess.call([’mkdir’,

resultsdir+eachbin+’_5’+’/traces/’])

#then run tbtrace

subprocess.call([tbtrace,

outputdir+resultsdir+eachbin+’_5’+’/traces/’,

trace+resultsdir+eachbin+’_5’+’/ExecutionTracer.dat’])

#for UPX_best binaries

#first mkdir /traces/

subprocess.call([’mkdir’,

resultsdir+eachbin+’_best’+’/traces/’])

#then run tbtrace
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subprocess.call([tbtrace,

outputdir+resultsdir+eachbin+’_best’+’/traces/’,

trace+resultsdir+eachbin+’_best’+’/ExecutionTracer.dat’])

#no status report/print statement needed, tbtrace already does that

def main():

traceit()

if __name__ == ’__main__’:

main()
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B.5 config.lua

Description: Written in Lua, this script sets the configuration options for S2E and

KLEE. It is required by S2E and KLEE to run properly.

-- Configuration file for enabling Plugins within S2E and

-- manipulating KLEE execution.

-- This was distributed along with all the other S2E tools, and

-- S2E needs it to run.

-- It should be kept in /home/s2e/s2e/, the same directory as

-- launch-x86, launch-x86-orig, and the qcow2 Debian disk image.

s2e = {

kleeArgs = {

-- Run each state for at least 5 sec before

-- switching to the other:

"--use-batching-search=true",

"--batch-time=5.0",

"--state-shared-memory=true"

}

}

plugins = {

-- Enable S2E custom opcodes

"BaseInstructions",

-- [Not available in this S2E installation]
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-- Enable SimpleSelect for use with init_env

-- "SimpleSelect",

-- Track when the guest loads programs

"RawMonitor",

-- Detect when execution enters the

-- program of interest

"ModuleExecutionDetector",

-- Restrict symbolic execution to

-- the programs of interest

"CodeSelector",

-- Required by TBTracer

"ExecutionTracer",

-- To give basic blocks executed

"TranslationBlockTracer",

-- Need so we know which module the traced

-- program counters belong to.

"ModuleTracer"

}

pluginsConfig = {}

85



B.6 launch-x86-orig

Description: Written in shell scripting code, launches the original QEMU system

emulator and boots the named disk image. Loads the previous snapshot of this disk image

if there is one.

#!/bin/sh

S2E=/home/s2e/s2e/build/qemu-release/i386-softmmu/qemu

$S2E -hda debian_lenny_i386_standard.qcow2 -loadvm 1
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B.7 launch-x86

Description: Written in shell scripting code, launches the S2E-modified version of

the QEMU system emulator and boots the named disk image. Note that the config.lua file

from Appendix B.5 is used when launching S2E. Also loads the previous snapshot of this

disk image if there is one.

#!/bin/sh

S2E=/home/s2e/s2e/build/qemu-release/i386-s2e-softmmu/qemu

$S2E -hda debian_lenny_i386_standard.qcow2 -loadvm 1 \

-s2e-config-file config.lua -s2e-verbose
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B.8 send-mail

Description: Written in shell scripting code, sends the experimenter an email. Typical

usage was immediately after the previous script in Appendix B.7 (launched together), so

the command would be: sh launch-x86; sh send-mail. Also, the “VM X” would be

replaced by the VM number that it happened to be running on. Before using on a clean

Ubuntu install, the exim4-light-daemon (or equivalent mail daemon) must be installed.

Instructions for exim4 configuration were followed from

[http://www.manu-j.com/blog/wordpress-exim4-ubuntu-gmail-smtp/75/].

#!/bin/sh

date | mail -s "[Run is done on VM X.]" [personal email redacted]@gmail.com
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Appendix C: Extraneous Graphs and Run Data

C.1 Basic Block Scatterplots
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Figure C.1: Scatterplot of Basic Block Coverage vs. Binary Size.
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Figure C.2: Scatterplot of Basic Block Coverage vs. Max States Found.
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Figure C.3: Scatterplot of Basic Block Coverage vs. Ratio of Binary Size to Max States
Found.
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C.2 Touched Function Block Scatterplots
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Figure C.4: Scatterplot of Touched Function Block Coverage vs. Binary Size.
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Figure C.5: Scatterplot of Touched Function Block Coverage vs. Max States Found.
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Figure C.6: Scatterplot of Touched Function Block Coverage vs. Ratio of Binary Size to
Max States Found.
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C.3 Fully Explored Function Block Scatterplots
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Figure C.7: Scatterplot of Fully Explored Function Block Coverage vs. Binary Size.
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Figure C.8: Scatterplot of Fully Explored Function Block Coverage vs. Max States Found.
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Figure C.9: Scatterplot of Fully Explored Function Block Coverage vs. Ratio of Binary
Size to Max States Found.
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